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Abstract

Damage evolution in cracked cylindrical shells subjected to uniform pressure is numerically simulated using ®nite

3D-continuum elements. The ductile material behaviour of mild steel is described in terms of the Gurson damage

model. To represent the stress and damage distribution across the wall thickness, three element layers normal to the

shell surface were used. The description of ®nite plasticity is based on the multiplicative split of the deformation

gradient. The numerical method is applied to investigate damage evolution, crack initiation and growth in a tube under

pressure containing an axial and a circumferential through-crack. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Shells or shell-like structures are common elements in mechanical and civil engineering. Therefore, a
signi®cant research interest has been devoted to these types of structures for many years. However, while
the di�erent models and the analytical and numerical methods can be successfully applied to many classes
of problems, there is still room for improvements, especially in view of a more detailed local analysis and
more sophisticated constitutive laws.

As a lot of engineering problems are endowed with geometrical or material nonlinearities, the ®nite
element method has become a useful tool for treating shell-like structures. Although the development of
special shell elements is extremely advanced (see e.g. Wriggers et al., 1996), their application is in most cases
restricted to speci®c geometries. As an example, due to complicated shapes of certain modern engineering
structures, common simpli®cations in shell theory (e.g. the thin shell hypothesis) become less adequate. An
attractive idea to overcome these simpli®cations is to model shells not by special shell elements but to
consider such structures as general 3D-continua which are numerically modelled by 3D-elements. Such a
concept was applied and compared with shell formulations in a few recent investigations, see Wriggers et al.
(1996) and Roehl and Ramm (1996). It o�ers (at least in principle) the opportunity for a more detailed
analysis of local 3D-phenomena, which was not done by the mentioned works.
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If a shell contains a crack or another type of stress concentrator, generally local 3D-stress ®elds occur
which cannot be modelled by usual shell elements. Therefore, it is desirable to develop simple but still
numerically stable 3D-continuum element formulations, which are able to model such problems with
su�cient accuracy. Unfortunately, the computer memory requirement rises considerably when using 3D-
elements, limiting even today their wider application. However, this aspect will become less important when
keeping in mind the rapid development of computer technology.

Damage as a pre-failure material state and in its ®nal stage as failure indicator is of high interest in
modern fracture mechanics. It is well known that especially 3D-e�ects accompanied with crack initiation
and crack growth in ductile materials can be described properly by applying appropriate continuum
damage models. Examples of such studies, based on the Gurson damage model and concentrated on the
damage and failure behaviour of test specimen used in ductile fracture mechanics, can be found in Klingbeil
et al. (1993) and Klingbeil and Zadeh (1995). The results indicate that the detailed fracture process gen-
erally can be better described by damage parameters than by conventional fracture quantities like for e.g.
the J-integral. Though ductile damage descriptions proved to be very useful in fracture mechanics, direct
applications to structures are very rare. The reasons for this may be found on the one hand in the numerical
expense and the numerical problems (e.g. mesh-dependent results) accompanied with the use of strain
softening material models and on the other hand in the fact that necessary material parameters are often
not available and di�cult to measure.

The aim of this study is to show that ductile damage models may be applied to investigate the damage
and fracture process in shell-like structures using ®nite 3D-continuum elements. The elastic±plastic dam-
aging material behaviour is described by Gurson's model (1977) in the version of Tvergaard (1989). This
model interprets the occurrence, growth and coalescence of microvoids as damage which is characterized by
the scalar ®eld f ± the void volume fraction. In order to introduce as little restrictions as possible, ®nite
deformations are taken into account. There are reasonable continuum-element formulations available in
the literature which are able to describe VVon Mises-plasticity or hyperelastic material models based on ®nite
deformations, see Wriggers et al. (1996) and the cited literature herein. The formulation, numerical
treatment and handling of this kind of 3D-modeling is well understood. Here, we generalize these for-
mulations by introducing the Gurson model and apply it to simple 8-node displacement elements used for
the spatial discretization of the structure. The emphasis of this study lies on the realization and application
of the numerical scheme. Not considered are critical aspects of the damage model and questions regarding
the determination of material parameters.

As examples, damage evolution, crack initiation and crack growth in a CT test specimen and in cy-
lindrical shells containing a through-crack subjected to increasing load are analysed. As a similar problem
was treated in Baaser and Gross (1998a) by a shell formulation, the present investigation can be regarded as
a continuation and generalization of that work to model through-cracked shell structures. To the know-
ledge of the authors such an investigation, using continuum elements instead of more complicated shell
elements in conjunction with the Gurson damage model, is not available in the literature.

2. Damage model and ®nite plasticity

2.1. Damage model

Constitutive basis of this study is the damage model proposed by Gurson (1977) and modi®ed in
Tvergaard (1989). It may be interpreted as an extension of conventional VV. Mises plasticity, taking into
account the experimental observation that ductile degradation processes consist of the nucleation, the
growth and the coalescence of microvoids. The volume fraction f of the voids is chosen as damage pa-

7094 H. Baaser, D. Gross / International Journal of Solids and Structures 37 (2000) 7093±7104



rameter. Since the model is extensively described and discussed in a series of papers, see Tvergaard (1989),
only a short outline is presented here.

The Gurson yield function which takes into account ductile damage processes may be written as

U � re

rM

� �2

� 2q1f � cosh
rkk

2rM

� �
ÿ 1

�
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�
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where re � �32sijsij�1=2
is the equivalent macroscopic stress, sij � rij ÿ 1

3
rkkdij, the stress deviator and rij, the

Cauchy stress tensor. By rM the current (microscopic) yield stress of the matrix material (without voids) is
represented, f � is the e�ective void volume fraction (Tvergaard, 1989) and q1 denotes a material parameter
which is chosen here (as in other investigations) as q1 � 1:5. It is obvious that U depends directly on the
damage variable f. The range of the possible elastic states described by U < 0 shrinks with increasing f and
loss of stress carrying capacity occurs. In space discretizing methods this softening leads to mesh dependent
results, if no additional regularization is introduced.

The macroscopic plastic strain rate _�pl is determined by the classical ¯ow rule

_�pl � _k
oU
or

; �2�

while the damage evolution _f � _fgrw � _fnucl is assumed to consist of the two parts
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Here, _fgrw and _fnucl describe the growth of the existing voids and the strain controlled nucleation of new
voids, respectively, and fN , eN and sN are material parameters. Further, epl

M represents the equivalent plastic
strain of the matrix material, which is determined by the assumption of equivalence of the plastic work
increments on the microscopic and macroscopic level:

�1ÿ f �rM _epl
M � r _�pl: �4�

Finally, to get a complete set of constitutive equations, the behaviour of the matrix material is ap-
proximated by the power law

rM � r0

epl
M

e0

 
� 1

!1=N

; �5�

where N is the hardening exponent, r0 � E e0 denotes the initial yield stress and E is Young's modulus.

2.2. Finite plasticity

In elastic±plastic shells under a su�ciently high load, and in particular close to a crack tip, ®nite de-
formations generally occur, where the inelastic (plastic) part of the strains usually is large compared with
the elastic part. The description of ®nite plastic deformations in conjunction with the Gurson model is often
done by using the additive decomposition of the elastic and plastic strains rates (Tvergaard, 1989). In
contrast to these works, we use the framework of multiplicative elastoplasticity which is widely accepted in
this ®eld. Its kinematic key assumption is the multiplicative split of the deformation gradient

F � FelFpl �6�
into an elastic and a plastic part, providing the basis of a geometrically exact theory and avoiding linea-
rization of any measure of deformation. As a further advantage, fast and numerical stable algorithms,
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proposed and described in Simo (1992), can be used. In the following, only a brief summary of the algo-
rithm in the context of an FE implementation is given.

An essential aspect of Eq. (6) is the resulting additive structure of the actual logarithmic principal
stretches within the return mapping scheme:

�el � �tr ÿ D�pl: �7�
Here, �i � ln ki (i � 1; 2; 3) and k2

i are the eigenvalues of an elastic trial state, described by the left
Cauchy±Green tensor btr

el. The elastic strains �el are de®ned by Hooke's law and the plastic strain corrector
D�pl can be derived by the normality rule of plastic ¯ow. The elastic left Cauchy±Green tensor can be
speci®ed with the decomposition (6) as

bel � Fel F
T
el � FCÿ1

pl FT ; �8�
which clearly shows the ``connection'' between the elastic and plastic deformation measure by the occur-
rence of the plastic right Cauchy±Green tensor Cpl � FT

pl Fpl.
By means of the relative deformation gradient (Simo, 1992)

f � ox

oxnÿ1

� FFÿ1
nÿ1 ; �9�

which relates the actual con®guration x to the con®guration belonging to the previous time step at tnÿ1, an
elastic trial-state is calculated for the current con®guration at time tn

btr
el � f bnÿ1 fT �10�

with frozen internal variables at state tnÿ1. If the condition U 6 0 is ful®lled by the actual stress state r, this
state is possible and is so the actual stress state. If, on the other hand, U 6 0 is violated by the trial-state, in
an additional step the trial stresses must be projected back on the yield surface U � 0. This ``return
mapping'' procedure is used as integration algorithm for the constitutive equations described in Section 2.1.
It shall be mentioned that the algorithmic treatment in terms of principal axes has some advantages
concerning computational aspects like time and memory saving. Based on this, the integration procedure of
the constitutive equations for large and for small deformations (Aravas, 1987) is very similar.

3. Finite element formulation

3.1. 3D-element

The discretization chosen in this article is based on a standard 8-node-displacement element formulation
with tri-linear shape functions Ni, (i � 1; 2; . . . ; 8). Starting point is the weak form of equilibrium

g�u; du� �
Z
B

rgraddudvÿ
Z

oBr

tL � duda � 0 �11�

formulated in the current con®guration, where u is the displacement and tL are the prescribed tractions
acting on the boundary oBr of the body B. Linearization with respect to the actual deformation state, and
rearrangement leads with dv � J dV after some steps to the following representation of the element sti�ness:

Dgelmt�û; du� �
Z
B0

J Dr� � gradDur�graddu dV elmt; �12�

where J � det F and B0 denotes the reference con®guration. The load increment Dr is calculated from the
linearization of the 2. Piola±Kirchho� tensor S as (Simo, 1992; Wriggers et al., 1996)
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J Dr � FDSFT: �13�

3.2. Underintegration and stabilization

The usual 2� 2� 2-point-integration of the chosen element type shows an extreme ``locking''-behaviour
in shear-dominated problems. For this reason a 1-point-integration is used, which leads to a softer element
behaviour. The terms omitted by this underintegration have to be taken into account by an arti®cial ele-
ment sti�ness stabilization matrix Kstab � Kstab�ai; ci�, where ai is the arti®cial sti�ness of the corresponding
eigenmode ci, see Flanagan and Belytschko (1981). By this, the phenomenon known as hourglassing, which
correlates to the eigenforms of the omitted terms, can be avoided, provided that values ai in Kstab are chosen
in the magnitude of the shear modulus G.

The locking-free behaviour of this element formulation was successfully proved by solving the problem
of the ``pinched cylinder''. This example is often used in the literature to test the e�ciency of di�erent
element formulations for large deformations, see e.g. Wriggers et al. (1996). A comparison of the results
based on the described 3D-element formulation with that of a shell element formulation (Wriggers et al.,
1996) and that of a 3D-enhanced-strain element (Wriggers et al., 1996) show an excellent agreement in the
load-displacement behaviour. Here, these results are omitted for the sake of brevity. As additional ad-
vantage of a reduced 1-point integration (which is important for 3D-models), the considerable reduction of
computer memory used for storing the history variables on each integration point shall be mentioned.
Compared with the 2� 2� 2-point integration, the 1-point integration needs only 1

8
of the history memory.

3.3. Solution procedure

To ®nd a numerical solution for the nonlinear system of equations resulting from Eq. (11), a Newton±
Raphson method is used. Within this global solution algorithm a solution Dun for the actual load step n has
to be found from

KDun � r ; �14�
where K is the sti�ness matrix. The standard treatment is a Gaussian elimination technique by a LDLT-
decomposition of K which is time and memory consuming. In contrast, in this study the iterative Lanczos
procedure, Lanczos (1950) (with the modi®cations of Paige and Saunders (1975)) is used. It has the ad-
vantage of a remarkable reduction of the memory requirement by using a special storage technique Taylor
(1985), making it highly favourable for large size 3D problems. For example, the memory required in the
®rst example of Section 4 using a Gauss decomposition is 41 MByte while the Lanczos solver storing the
sti�ness matrix as skyline needs just 6.5 MByte. Regarding the CPU time, for the mentioned example both
solvers need about the same time (60 s for one iteration step on an IBM RS/6000, working at about 20.7
M¯ops). But with increasing problem size the Lanczos method is getting faster compared with the Gauss
decomposition.

4. Examples and results

4.1. Test example: CT specimen

First, as a test example, crack initiation and growth in a CT specimen of German mild steel StE460 as
shown in Fig. 1 is numerically simulated. For the same con®guration and material, experimental and
numerical results were reported in Klingbeil et al. (1993) and Klingbeil and Zadeh (1995). The material
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parameter set (Table 1) is taken from Klingbeil et al. (1993) with only slight modi®cations in order to get a
better approximation of the real matrix material behaviour in the transition region from the pure elastic to
the pure plastic range (in Klingbeil et al. (1993) the parameters r0 � 460 MPa and N � 7 were used). Since
the two-parameter ®t for the power law (5) from experimental data is dependent on the considered strain
interval, these modi®cations may be tolerated. On account of the symmetry, only 1

4
of the specimen has to be

discretized.
As mentioned before, the FE results are mesh dependent on account of the strain softening character

(loss of ellipticity) of the Gurson model. This problem might be overcome by regularizing the governing
equations. As possible candidates e.g. nonlocal formulations, gradient formulations, Cosserat theories or
viscoplastic material descriptions are discussed in the literature (Ehlers et al., 1998; Feucht et al., 1997). By
all these formulations, an intrinsic ``material length'' is introduced. Because the physical basis of such a
length is not yet clear in most of the cases, its introduction can be regarded as motivated more by the
numerical argument of a regularization. Although, recent investigations (De Borst and M�uhlhaus, 1992;
Feucht et al., 1997) have shown that nonlocal and gradient formulations may lead to mesh-independent
results, these methods are not used here on account of their numerical expense. As a simple alternative, a
``quasi-material'' length is introduced which is de®ned by the edge length of the ®nite elements in the
damaging region ahead and around the crack tip. This procedure, which was also successfully used in other
investigations (Hutchinson, 1997; Klingbeil et al., 1993; Klingbeil and Zadeh, 1995), consists in the nu-
merical simulation of a fracture test with ®xed material data by only varying the ®nite element edge length.
The ``correct'' length is determined by matching the crack initiation loads from the experiment and from the
simulations. This length is then regarded like a material parameter which cannot be changed for simula-
tions of other test specimen or structures made from the same material.

By applying this procedure to the CT specimen and using the experimental data from Klingbeil and
Zadeh (1995) (with an initiation load Fu ' 22:3 kN), the ®nite element edge length ®nally was set to

Fig. 1. CT Specimen and FE model.

Table 1

Material parameters

E MPa� � m r0 MPa� � N q1 f0 fc ff fN eN sN

210000 0:3 450 5 1:5 0:0025 0:021 0:19 0:01 0:3 0:1
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le � 0:2 mm. Here, crack initiation was de®ned by the ®rst failure of an element (at ff ), and its switch-o� by
a speci®c ``node-skipping-technique''. In Fig. 2, the load±displacement curves from the experiment (taken
from Klingbeil and Zadeh (1995)) and from our numerical simulation with le � 0:2 mm are compared.
Both curves are in good agreement. The slight di�erence of the crack initiation point may be explained by
an unprecise le and the uncertainties of the exact determination of the crack initiation instant in the
simulation as well as in the experiment. The typical damage distribution on the ligament at the instant of
crack initiation is depicted in Fig. 3. It can be seen that the damage is concentrated directly in front of the
initial crack tip with increasing f towards the middle region of the specimen. This behaviour was also found
in the investigations of Shih et al. (1997) and Klingbeil and Zadeh (1995). Because at crack initiation, the
®rst elements have been already switched-o�, the highest f-values appear at a short distance ahead of the
initial crack front.

Fig. 2. Load±displacement curve: experiment and simulation.

Fig. 3. Damage distribution in the ligament at crack initiation.
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4.2. Cylindrical shell containing a crack

The capability of the used model is demonstrated in the following with the example of a through-cracked
cylindrical shell of moderate thickness under a pressure load p. First, a shell containing an axial crack as
shown in Fig. 4 with the geometry parameters of Table 2 is considered. The ®nite element discretization in
the region, indicated in Fig. 4, is realized by a mesh generator Rank et al. (1992) for a 2D-wind-o� and then
expanded in the thickness direction by moving the nodal coordinates. In this example, the wall thickness
consists of three element layers. Therefore, the model is able to capture the shell-bending e�ects and (at
least roughly) the damage distribution across the wall thickness. Since the material is assumed to be the
same as in the test example, the mesh size ahead and around the crack tip is set to le � 0:2 mm. The realized
mesh, consisting of 2464 nodes de®ning 1629 brick elements, is depicted in Figs. 4 and 6. The chosen
boundary conditions represent a periodic continuation of the structure in axial and circumferential di-
rection. The pressure p is applied by attaching it to nodal force values depending on the actual con®gu-
ration (Schweizerhof and Ramm, 1984) at the inner surface nodes of the shell. Because a pressure load
controlled simulation is impossible in the crack initiation and softening load regime, an arc-length pro-
cedure is used to control the load (belonging to an actual load step) and to ®nd the stable solution branch.

The global behaviour of the structure is represented by the ``pressure vs. load steps''-diagram in Fig. 5,
in which crack initiation and growth is indicated additionally. With increasing load steps the pressure ®rst
rises up to a peak load and then decreases continuously. Conspicuous is the instant of crack initiation at
a load level of 80 (p � 0:82 MPa), appearing distinctly behind the pressure maximum at load level 60
(p � 0:84 MPa). This global softening of the structure before crack initiation might be explained by the

Table 2

Geometry data: shell containing an axial crack

L (mm) R (mm) t (mm) a (mm) le (mm)

50:0 50:0 1:0 30:0 0:2

Fig. 4. Shell with axial crack.
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®nite (outward directed) deformations of the crack face regions, resulting in additional strains through
bending. In this context it should be mentioned that the pressure p always acts perpendicular to the de-
formed shell surface. Further crack advance after initiation occurs in the softening regime at higher load
steps. It is self-evident that such a behaviour is only possible under strain controlled (deformation con-
trolled) loading. Under pressure controlled circumstances (and taking not into account crack initiation), the
peak load would characterize an instability point of the structure. When allowing crack initiation, a snap-
through phenomenon at crack initiation pressure would occur, accompanied by an unstable crack growth.
It should be emphasized that the computational catch-up of the global softening behaviour is just possible
by the used arc-length method, allowing to ®nd a stable global solution despite the decreasing pressure.

In Fig. 6, the VVon Mises equivalent stress distribution in the outer shell surface at crack initiation (load
step 80) is shown for the discretized region. It is remarkable that the plastic zone size, characterized by the
initial ¯ow stress r0 � 450MPa, is relatively small. This behaviour is qualitatively comparable with that of
a CCT specimen. The details of the damage and stress distribution in the near-tip region at di�erent load
levels are illustrated in Fig. 7. Shown are f and reqv across the wall thickness and the outer shell surface as
well as the crack front advance Da at load level 100, 130 and 160. As already mentioned, crack initiation
occurs at a load level of 80, which is numerically indicated by the failure and switch-o� of the ®rst element ±
here the middle element ahead of the initial crack front. At a load level of 100, the failure of two elements
(that in the middle and that at the inner surface) is visible. At a load level of 130, the crack front has

Fig. 6. VVon Mises stress ± axial crack.

Fig. 5. Pressure vs. load steps.
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propagated by two elements across the whole wall thickness and ®nally a Da � 0:6 mm can be observed at
load level 160. As the crack growths the ®elds of f and reqv are varying. Further it can be seen that the high
level region of both ®elds is shifted slightly from the middle surface towards the inner surface of the shell at
all load levels. At a load level of 160, an unloading region between the initial and the actual crack front has
developed.

Next, a shell of the same geometry and loading, containing a circumferential crack as represented in Fig.
8 and with the geometry parameters of Table 3, is considered. Only a few results shall be discussed for this
case. Fig. 9 shows the distribution of the equivalent stress at load step 90 (p � 0:12 MPa), which in essential
parts di�ers from that for the axial crack. While the load step 90 characterizes in the case of an axial crack a
deformation state after crack initiation, no crack advance has appeared this instant for the circumferential
crack. In the present case, the stress gradients normal to the ligament are not as high as for the axial crack.
As a consequence, the plastic zone and deformation is not as localized as for the axial crack. Further, the
shift of the stress concentration across the wall towards the inner shell surface is now signi®cantly more
pronounced as for the axial crack. In addition to these results, the deformation of the mesh (enlarged 20

Fig. 7. Zoom out ± axial crack.
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Fig. 8. Shell with circumferential crack.

Fig. 9. Results at load step 90 ± circumferential crack.

Table 3

Geometry data: shell containing a circumferential crack

L (mm) R (mm) t (mm) a (�) le (mm)

25:0 50:0 1:0 45:0 0:2
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times for a better representation) around the crack tip is shown in Fig. 9. From this ®gure the wall necking
of the wall at the crack front clearly can be seen.

It shall be emphasized that the global loading of the circumferential crack di�ers essentially from the
axial crack since no resultant axial load results from the internal pressure. Keeping this in mind, the dif-
ferent local behaviour around the crack front may be expected.
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